- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tankala, Pranay (2)
-
Alabi, Daniel (1)
-
Ba, Demba (1)
-
Kothari, Pravesh K. (1)
-
Murphy, James M. (1)
-
Tasissa, Abiy (1)
-
Venkat, Prayaag (1)
-
Zhang, Fred (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tasissa, Abiy; Tankala, Pranay; Murphy, James M.; Ba, Demba (, IEEE Transactions on Signal Processing)We propose K-Deep Simplex (KDS) which, given a set of data points, learns a dictionary comprising synthetic landmarks, along with representation coefficients supported on a simplex. KDS employs a local weighted ℓ1 penalty that encourages each data point to represent itself as a convex combination of nearby landmarks. We solve the proposed optimization program using alternating minimization and design an efficient, interpretable autoencoder using algorithm unrolling. We theoretically analyze the proposed program by relating the weighted ℓ1 penalty in KDS to a weighted ℓ0 program. Assuming that the data are generated from a Delaunay triangulation, we prove the equivalence of the weighted ℓ1 and weighted ℓ0 programs. We further show the stability of the representation coefficients under mild geometrical assumptions. If the representation coefficients are fixed, we prove that the sub-problem of minimizing over the dictionary yields a unique solution. Further, we show that low-dimensional representations can be efficiently obtained from the covariance of the coefficient matrix. Experiments show that the algorithm is highly efficient and performs competitively on synthetic and real data sets.more » « less
An official website of the United States government
